Characteristics of Gadolinium-DTPA Complex: A Potential NMR Contrast Agent

Chelation of the rare-earth element gadolinium (Gd) with diethylenetriaminepentaacetic acid (DTPA) results in a strongly paramagnetic, stable complex that is well tolerated in animals. The strongly paramagnetic gadolinium complex reduces hydrogen-proton relaxation times even in low concentrations (less than 0.01 mmol/L). The pharmacokinetic behavior of intravenously delivered Gd-DTPA is similar to the well known iodinated contrast agents used in urography and angiography; excretion is predominantly through the kidneys with greater than 90% recovery in 24 hr. The intravenous LD50 of the meglumine salt of Gd-DTPA is 10 mmol/kg for the rat; in vivo there is no evidence of dissociation of the gadolinium ion from the DTPA ligand. The combination of strong proton relaxation, in-vivo stability, rapid urinary excretion, and high tolerance favors the further development and the potential clinical application of gadolinium-DTPA as a contrast enhancer in magnetic resonance imaging.

Recent developments in nuclear magnetic resonance (NMR) technology have led to a new and extremely promising diagnostic technique, proton NMR tomography. Using a suitable radiofrequency pulse sequence (saturation-recovery, inversion-recovery, or spin-echo), it is possible to obtain images of high quality that often aid in the characterization of pathologic processes, especially within the brain [1–10]. Differentiation of tissue from normal is provided when a distinction exists between the spin-lattice and/or spin-spin relaxation times of a lesion and those of surrounding normal tissues. Other factors that influence signal intensity, such as hydrogen-proton concentration and proton motion, seem to play a lesser role than relaxation times in most cases.

If differences in relaxation times between contiguous healthy and pathologic tissues are only insignificant, or even identical, differentiation is impossible by NMR tomography [11]. Diagnosis is made more difficult by the fact that relaxation times of various malignant and benign lesions or normal tissue may overlap [12]. Another feature of NMR imaging that may be regarded as a disadvantage in comparison with conventional imaging techniques is that the NMR image does not provide a direct measurement of organ function [11].

Recent investigations indicate that paramagnetic compounds used as NMR contrast agents may augment the diagnostic yield from NMR tomography by enhancing the contrast between magnetically similar but histologically dissimilar tissues and by providing a direct measure of organ function [13–19]. Alternatively, continued development of NMR technology and the use of sophisticated computer-assisted analyses may render contrast agents unnecessary.

To date, experiments with NMR contrast agents have focused on three different types of paramagnetic substances. The first type belongs to the group of nitroxyl stable-free radicals; these compounds, containing one unpaired electron, have been shown to be relatively stable, to be well tolerated in experimental animals, and to decrease proton relaxation times [19]. Transition elements and rare-earth elements constitute the second major group of paramagnetic substances with
potential as NMR contrast agents. Considerable attention has focused on the bivalent manganese ion (Mn²⁺), which owes its high degree of paramagnetism to five unpaired electrons [20]. Due to the potential of the Mn²⁺ ion to undergo spontaneous oxidation leading to a change or loss of paramagnetic properties and because of prolonged retention within the liver, the in-vivo possibilities may be limited. A third class of paramagnetic compounds is represented by molecular oxygen, which is paramagnetic by virtue of two unpaired electrons with parallel spins that do not cancel. Oxygen used as a NMR contrast agent has the disadvantage that within an organism, the molecule may rapidly lose its paramagnetic properties (e.g., in the formation of diamagnetic oxyhemoglobin) [21].

The general aim was to find a compound that remained stable in vivo, had a powerful influence on proton relaxation times, but was free of toxic effects in doses appropriate for contrast enhancement in vivo. Moreover, it was essential that the compound undergo tissue-specific or, at least, compartment-specific distribution in the living organism.

Gadolinium (Gd), a rare-earth element the ion of which (Gd³⁺) has seven unpaired electrons, also has an unusually strong hydrogen-proton spin-lattice relaxation effect (fig. 1) [20]. The gadolinium ion has been used as a paramagnetic proton-relaxation probe in NMR biochemical studies [22]. Because of poor tolerance for unaltered gadolinium ions, a means of detoxification is necessary for in-vivo administration [23]. Since the atoms of the rare-earth elements do not form stable, covalent bonds with organic molecules, the paramagnetic Gd ion might be detoxified by complexation. Gadolinium is known to form stable chelates with ethylenediaminetriacetate acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA); the formation constants (log k) for Gd-EDTA and Gd-DTPA are 17 and 22-23, respectively [24]. Our study examines the in-vivo stability, pharmacokinetics, and toxicity of Gd-DTPA and compares it with Gd-EDTA and gadolinium chloride.

Materials and Methods

Gadolinium chelates were synthesized by incubation of Gd₂O₃ (Auer-Remy, Hamburg, W. Germany) and the corresponding ligands. The synthesis of Gd-DTPA is an example. A suspension of 43.5 g of Gd₂O₃ and 94.5 g of DTPA in 1.2 L water was stirred, while being heated to 90°C to 100°C, for 48 hr. The undissolved material was then filtered off, and the filtrate was evaporated until dry.

The addition of N-methylglucamine yielded water-soluble salts of the gadolinium chelates, ethylenediaminetetraacetic acid (Gd-EDTA) and diethylenetriaminepentaacetic acid (Gd-DTPA) as described in the published patent application [25]. A 0.5 mol/L solution of dimeglumine-Gd-DTPA has an osmotic pressure of 49.8 atm (1.94 osmol/kg) and a viscosity of 2.9 mPa.s measured at 37°C by vapor-pressure osmometry and capillary viscosimetry, respectively. Free gadolinium ions were not detectable (below 0.01%) by use of xylenol orange as indicator [26]. Aqueous gadolinium chloride and diatrizoate (Angiografin [corresponds to Angioview]) were used as reference solutions.

Proton Relaxation Effects

The effects of the paramagnetic compounds on proton relaxation times were measured in aqueous solutions at 20 MHz (0.47 T) using a pulse NMR spectrometer (Minispec pc 20, Bruker, Karlsruhe, W. Germany) for inversion-recovery and Carr-Purcell-Meiboom-Gill pulse sequences.

Tolerance

The acute intravenous tolerance (LD₅₀) of test solutions was evaluated by administration of different volumes of each agent directly into the tail veins of rats. Outbred male and female rats (strain: Wistar-Han-Schering) weighing 90–110 g were given a single intravenous injection at one of two to four dose levels; three to six animals were given each dose. The injection rate was 2 ml/min and the rats were observed for 7 days after the injection. The concentration of test solution was 0.5 mol/L Gd-DTPA, 0.1 mol/L GdCl₃ and Gd-EDTA, or 305 mg/l for diatrizoate. The amount of compound producing 50% mortality (LD₅₀) was determined by interpolation from the results of different dose levels. A 0.5 mol/L solution of Na₂Ca-DTPA (Heyl, W. Germany), a chelating drug used to treat heavy-metal poisoning, was also tested for LD₅₀ as a comparison.

Neural tolerance was assessed by intracisternal injection in male and female rats. The amounts of each compound producing 50% moribidity (ED₅₀) (lack of motor coordination or epileptoid fit) and 50% mortality (LD₅₀) were determined by interpolation from the results of four to 10 dose levels, each administered to 10 animals [27].

Because the in-vivo tolerance of contrast media correlates with the hydropathy, the partition coefficients of Gd-DTPA and diatrizoate were determined in a n-butanol-buffer mixture at pH 7.6 [28]. In order to establish whether Gd-DTPA causes some of the side effects known from radiographic contrast media the potential influence of Gd-DTPA and diatrizoate on the complement system was measured using the method of activation described by Mützel et al. [29].

Pharmacokinetics

Pharmacokinetic studies were performed with ⁵⁸Gd-labeled compounds. ⁵⁸GdCl₃ (382 MBq/mg Gd, Amersham, England) was added to a 0.25 mol/L solution of unlabeled GdCl₃. ⁵⁸Gd-labeled Gd-DTPA was prepared by incubation of ⁵⁸GdCl₃ and DTPA. On the basis of molar concentrations, the amount of DTPA was 10% higher than the amount of the radioactive material; pH was adjusted to 7.2 by addition of N-methylglucamine. A small amount of this solution of high specific
activity (high radioactivity but low Gd concentration) was mixed with 0.5 mmol/L of unlabeled Gd-DTPA. The specific activity of the resulting solution, used for the study of excretion and organ distribution, was 2 MBq/mmol; for blood- and plasma-level studies, an activity of 0.15 MBq/mmol was used. Free gadolinium was not detectable (below 0.01%) by means of thin-layer chromatography or xylene orange as indicator [26]. The 152Gd activity was measured with the aid of a gamma scintillation counter (Compus Gamma 1282, LKB/Wallac, Finland).

Renal and fecal excretions were analyzed for 7 days after intravenous administration of 0.5 mmol/kg radiolabeled Gd-DTPA or 0.25 mmol/kg radiolabeled GdCl3 in five male rats (140–160 g). In another experiment using five rats, serial blood, urine, and plasma concentrations of Gd-DTPA were determined for 3 hr after intravenous injection of 0.5 mmol/kg. For each time point, blood was taken from three to five animals. Half-lives of Gd-DTPA disappearance were then calculated for blood, plasma, and urine from levels of radiolabel; values were based on computer calculation using an open one-compartment model [30]. Gadolinium concentrations in kidney, liver, and spleen and the amount of gadolinium remaining in the organism were determined 7 days after injection.

Results

Proton Relaxation Effects of Gadolinium Compounds

The free gadolinium ion (Gd3+) and the two gadolinium chelates produced distinct effects on the T1 and T2 relaxation times of hydrogen protons in aqueous solutions (table 1); increased in the concentration of these paramagnetic agents resulted in a decrease in both T1 and T2 relaxation times. A straight-line relation was observed between concentration and the reciprocal value of relaxation times in the range of 0–1 mmol/L. Chelation with either EDTA or DTPA reduced the paramagnetic properties of nonchelated gadolinium. The proton relaxation times of demineralized water were reduced by half with about 50 pmol/L gadolinium chloride and about the same amount of Gd-EDTA, but almost 80 pmol/L was required to achieve the same proton relaxation effect with Gd-DTPA.

Tolerance

For gadolinium chloride and Gd-EDTA, half of the animals investigated died after a dose of less than 1 mmol/kg (table 2). Gd-DTPA demonstrated a considerably better tolerance; for this chelate, the LD50 was 10 mmol/kg. For comparison, the LD50 was 18 mmol/kg for the iodinated radiographic contrast agent, diatrizoate, corresponding to about 7 g I/kg. For Gd-DTPA and diatrizoate administrations, the animals died within the first 3 hr. For Gd-EDTA and GdCl3, some animals died several days after administration, implying a different form of toxicity.

Animals receiving subarachnoidal administrations of GdCl3 and Gd-EDTA displayed a poorer tolerance than that shown for Gd-DTPA and diatrizoate (table 3). Tolerance to free gadolinium ions was lowest of all gadolinium agents for the intracisternal route. In the case of GdCl3, the values of the ED50 and LD50 were virtually identical, meaning that minor neurotoxic effects were immediately followed by severe and lethal toxicity. The overall best neural tolerance was observed for gadolinium chelated with DTPA; for Gd-DTPA, the values of the LD50 were 10 times higher than ED50 values with both routes of neural administration.

Both Gd-DTPA and diatrizoate are very hydrophilic substances. Partition coefficients (log P) of −2.7 and −1.3 were measured for the gadolinium chelate and the iodinated contrast agent, respectively. However, the butanol-buffer partition coefficient of Gd-DTPA is about 25 times smaller than that of the iodinated compound.

The in-vitro investigation of complement activation showed that 50% of plasma complement remained at a diatrizoate concentration of 0.4 mol/L. In the case of Gd-DTPA, practically no influence on the complement system was detected; 50% activation required 2.5 mol/L.

Pharmacokinetics

At 5 min after intravenous injection of 0.5 mmol/kg Gd-DTPA into the rats, about 10% of the dose could be detected in the whole blood volume. The blood concentration subsequently decreased with a half-life of about 20 min (fig. 2). Gd-DTPA apparently did not penetrate the cell membrane of
TABLE 3: Tolerance after Intracisternal Administration in Rats

<table>
<thead>
<tr>
<th>Agent</th>
<th>Dose* (mmol/kg)</th>
<th>No. Reactors</th>
<th>No. Deaths</th>
<th>ED50</th>
<th>LD50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meglumine diatrizoate</td>
<td>4</td>
<td>1</td>
<td>NE</td>
<td>11 (8-15)</td>
<td>55 (44-67)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2</td>
<td>NE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>5</td>
<td>NE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>7</td>
<td>NE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>10</td>
<td>NE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>NE</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>NE</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>NE</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>84</td>
<td>NE</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>NE</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GdCl3</td>
<td>3</td>
<td>3</td>
<td>NE</td>
<td>6 (4-8)</td>
<td>8 (7-10)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>7</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meglumine–Gd-EDTA</td>
<td>8</td>
<td>2</td>
<td>NE</td>
<td>12 (4-8)</td>
<td>23 (19-27)</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>7</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>NE</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>10</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimeglumine–Gd-DTPA</td>
<td>17</td>
<td>0</td>
<td>NE</td>
<td>74 (49-112)</td>
<td>650 (544-800)</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>3</td>
<td>NE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>67</td>
<td>4</td>
<td>NE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>133</td>
<td>7</td>
<td>NE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>198</td>
<td>NE</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>417</td>
<td>NE</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>617</td>
<td>NE</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>833</td>
<td>NE</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1233</td>
<td>NE</td>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note.—NE = Not evaluated; numbers in parentheses are 95% confidence intervals.
* n = 10 per dose.

Fig. 2.—Blood level and urinary excretion of 153Gd-DTPA after intravenous injection of 0.5 mmol/kg in five male rats (140-160 g body weight).

TABLE 4: Excretion and Tissue Distribution after Intravenous Injection of 153Gd-DTPA in Rats

<table>
<thead>
<tr>
<th></th>
<th>Gd-DTPA</th>
<th>Time after Dose (days)*</th>
<th>% of Administered Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excreted:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine</td>
<td></td>
<td>0-3 hr</td>
<td>87.6 ± 1.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0-1</td>
<td>89.2 ± 2.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0-7</td>
<td>89.7 ± 2.7</td>
</tr>
<tr>
<td>Feces</td>
<td></td>
<td>0-1</td>
<td>5 ± 3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0-7</td>
<td>7.4 ± 4.5</td>
</tr>
<tr>
<td>Residual:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td>7</td>
<td>0.08 ± 0.01</td>
</tr>
<tr>
<td>Spleen</td>
<td></td>
<td>7</td>
<td>0.01</td>
</tr>
<tr>
<td>Kidney</td>
<td></td>
<td>7</td>
<td>0.1 ± 0.03</td>
</tr>
<tr>
<td>Remaining body</td>
<td></td>
<td>7</td>
<td>0.21 ± 0.05</td>
</tr>
<tr>
<td>Total recovery</td>
<td></td>
<td>7</td>
<td>97.5 ± 3.0</td>
</tr>
</tbody>
</table>

Note.—Data from injection of 0.5 mmol/kg 153Gd-DTPA in five male rats weighing 140-160 g.
* Time given in days unless indicated otherwise.

blood cells; the concentration in plasma remained 1.6 times higher than in blood over 2 hr of observation.

A half-life of about 20 min was observed for renal excretion up to 3 hr after injection. By 3 hr, more than 80% of the compound had been excreted from the organism in urine (table 4). By 7 days after intravenous injection, a total of 90% of the dose had been recovered in the urine and another 7% was recovered in the feces. Less than 0.3% of the given dose was found in the organism, with 0.08% of the dose being detected in the liver and 0.1% in the kidneys.

By 7 days after intravenous injection of radiolabeled GdCl3, only 2% of the dose had been excreted. The major portion was discovered in the liver and spleen, about 60% being in the liver and 25% in the spleen (table 5).
TABLE 5: Excretion and Tissue Distribution after Intravenous Injection of \(^{153}\)GdCl\(_3\) in Rats

<table>
<thead>
<tr>
<th>GdCl(_3)</th>
<th>Time after Dose (days)</th>
<th>% of Administered Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excreted:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine</td>
<td>0–3 hr</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>0–1</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>0–7</td>
<td>0.1 ± 0.0</td>
</tr>
<tr>
<td>Feces</td>
<td>0–1</td>
<td>0.6 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>0–7</td>
<td>2.1 ± 0.5</td>
</tr>
<tr>
<td>Residual:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>7</td>
<td>56.1 ± 8.9</td>
</tr>
<tr>
<td>Spleen</td>
<td>7</td>
<td>25.3 ± 3.7</td>
</tr>
<tr>
<td>Kidney</td>
<td>7</td>
<td>0.6 ± 0.1</td>
</tr>
<tr>
<td>Remaining body</td>
<td>7</td>
<td>16.3 ± 2.3</td>
</tr>
<tr>
<td>Total recovery</td>
<td>7</td>
<td>100.6 ± 8.9</td>
</tr>
</tbody>
</table>

Note: - Data from injection of 0.25 mmol/kg \(^{153}\)GdCl\(_3\) in five male rats weighing 140–160 g.

* Time given in days unless indicated otherwise.

Discussion

Of all elements, gadolinium has the strongest influence on T1 relaxation times of hydrogen protons (fig. 1) [20]. This powerful proton-relaxing effect of gadolinium can be attributed to a complex interplay of several factors including a strong magnetic moment, long electron-spin-relaxation time, isotropy of g-tensors, rotational tumbling time, configuration and mobility of molecules of hydration, and proximity of hydrogen nuclei to the paramagnetic center [31, 32]. Chelating gadolinium to EDTA or DTPA reduces, but far from eliminates, gadolinium's strong influence on proton T1 and T2 relaxation.

The coordination number of Gd\(^{3+}\) is estimated to be 9 or 10 [22, 33]. Thus, using DTPA with eight coordination sites as a chelation ligand, only eight of gadolinium's nine or 10 possible coordination sites could be filled. This leaves at least one or two sites open for fast-exchanging water protons to approach closely to the paramagnetic center of the complex. Proton relaxation enhancement is directly proportional to the number of available coordination proton ligands per paramagnetic ion. Thus gadolinium complexes (Gd-DTPA and Gd-EDTA), compared with the nonchelated gadolinium species, would be predicted to have reduced proton relaxation effects on water molecules. This prediction was supported by our experimental results. To obtain the same influence on proton relaxation as that achieved with the free gadolinium ion, the concentration of Gd-DTPA must be about twice as high.

The complexation of gadolinium with EDTA produced little or no improvement in tolerance compared with gadolinium chloride. Whether the chemotoxicity of the entire complex itself or a dissociation of the gadolinium ion from the EDTA ligand within the body caused the effect is not clear. It may be that the Gd-EDTA stability constant of about 10\(^{10}\) is insufficient to prevent the interaction of free gadolinium ions with high-affinity binding sites of enzymes. DTPA binds gadolinium several magnitudes more tightly (log \(K = 22\)) than EDTA [24]. Gd chelation with DTPA does, in fact, produce a compound with much improved tolerance. The LD\(_{50}\) is higher than that of Na\(_2\)Ca-DTPA, which is a complexing agent used as an antidote for heavy-metal poisoning in man.

The acute intravenous tolerance (LD\(_{50}\)) of Gd-DTPA in rats is in the range of that of the most commonly used radiographic contrast agent, diatrizoate. The neural tolerance of Gd-DTPA is several times better than for diatrizoate. A high neural tolerance is particularly advantageous if a compound may pass the blood-brain barrier.

According to the hypothesis of Lasser (Lang et al. [34]), activation of the complement system by radiographic contrast media is correlated to certain of their untoward anaphylactoid reactions. Gd-DTPA, a very poor activator of the complement system, would not be expected to produce such adverse reactions.

The combination of gadolinium with DTPA reduces the toxicity of the two separate components, gadolinium and DTPA [35]. This is reflected in the pharmacokinetic behavior after intravenous administration of Gd-DTPA compared with gadolinium chloride. Whereas the gadolinium ion is largely retained by the organism, in particular in the liver and spleen, Gd-DTPA leaves the body within the first few hours after intravenous injection. Compared with GdCl\(_3\), there is no retention of gadolinium in liver and spleen. There seems to be no dissociation of gadolinium from the Gd-DTPA complex within the body.

The short (20 min) half-life of Gd-DTPA in blood and urine and the predominate renal elimination suggest that the compound has very little if any interaction within the body. The stable ratio of concentrations between plasma and blood and the fate of Gd-DTPA in the organism lead us to postulate that this complex is distributed exclusively extracellularly. The very high hydrophilicity, the charge, and the rather large molecular weight of Gd-DTPA (about 550) probably account for its exclusion by biologic barriers such as cell membranes. Gd-DTPA would be expected to remain within the extracellular space and not to penetrate the normal blood-brain barrier.

From the pharmacokinetic and in-vitro proton relaxation data for Gd-DTPA, we predict that an in-vivo dose of 0.1–0.5 mmol/kg would produce a significant tissue enhancement on NMR images. This predicted diagnostic dose is \(\frac{1}{100}\) to \(\frac{1}{200}\) of the observed LD\(_{50}\) dose, a wide margin of safety. Independent from our study, Fobben and Wolf [36] have called attention to Gd-DTPA as a potential NMR myocardial contrast agent and noted an absence of cardiotoxicity.

In summary, our results indicate that Gd-DTPA is an agent capable of strong proton relaxation enhancement with relatively high in-vivo tolerance. This hydrophilic complex is rapidly excreted, predominately in the urine, and apparently does not dissociate in vivo. These characteristics favor the use of Gd-DTPA as an NMR contrast enhancer.

REFERENCES

Circulation 1982;66:1012–1016

Radiology 1983;147:773–779
41. Sean M. Lang, Tarek Alsaid, Ryan A. Moore, Mantosh Rattan, Thomas D. Ryan, Michael D. Taylor. 2019. Conservative gadolinium administration to patients with Duchenne muscular dystrophy: decreasing exposure, cost, and time, without change in medical management. The International Journal of Cardiovascular Imaging 35:12, 2213-2219. [Crossref]
43. M. Parant, B. Sohn, J. Flayac, E. Perrat, F. Chuburu, C. Cadiou, C. Rosin, C. Cosu-Leguille. 2019. Impact of gadolinium-based contrast agents on the growth of fish cells lines. Ecotoxicology and Environmental Safety 182, 109385. [Crossref]
45. Melanie Gut, Jason P. Holland. 2019. Synthesis and Photochemical Studies on Gallium and Indium Complexes of DTPA-PEG 3 -ArN 3 for Radiolabeling Antibodies. Inorganic Chemistry 58:18, 12302-12310. [Crossref]
47. Silvia Maria Lattanzio. 2019. The gadolinium hypothesis for fibromyalgia and unexplained widespread chronic pain. Medical Hypotheses 129, 109240. [Crossref]
49. Melanie P. Muller, Tao Jiang, Chang Sun, Muyun Lihan, Shashank Pant, Paween Mahintheichaihan, Anda Trifan, Emad Tadjkhorshid. 2019. Characterization of Lipid–Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chemical Reviews 119:9, 6086-6161. [Crossref]
50. Weihua Liao, Peng Lei, Jinbin Pan, Cai Zhang, Xianting Sun, Xuejun Zhang, Chunshui Yu, Shao-Kai Sun. 2019. Bi-DTPA as a high-performance CT contrast agent for in vivo imaging. Biomaterials 203, 1-11. [Crossref]
52. Atika Dougherty, Erika L.Y. Nasution, Ferry Iskandar, Geoff Dougherty. 2019. Facile solvothermal synthesis and functionalization of polyethylene glycol-coated paramagnetic Gd2(CO3)3 particles and corresponding Gd2O3 nanoparticles for use as MRI contrast agents. Journal of Science: Advanced Materials and Devices 4:1, 72-79. [Crossref]
53. Pooja Ebrahimzade, Maurizio Barbieri. 2019. Gadolinium as an Emerging Microcontaminant in Water Resources: Threats and Opportunities. Geosciences 9:2, 93. [Crossref]
55. Begoña Botnar. Atherosclerotic Plaque Imaging 229-248. [Crossref]
56. David J. Murphy, Raymond Y. Kwong. Contrast Agents in Cardiovascular Magnetic Resonance Imaging 127-143. [Crossref]
59. Chuhua Xin, Xiuzhong Yao, Bin Du, Weiyu Yang, Liuguo Wang, Lirong Ma, Weiyu Weng. 2019. Stearic Acid-Grafted Chitooligosaccharide Nanomicelle System with Biocleavable Gadolinium Chelates as a Multifunctional Agent for Tumor Imaging and Drug Delivery. Pharmaceutical Research 36:1. . [Crossref]
60. Riccardo Faletti, Marco Gatti, Andrea Di Chio, Marco Fronda, Matteo Anselmino, Federico Ferraris, Fiorenzo Gaita, Paolo Fonio. 2018. Concentrated pineapple juice for visualisation of the oesophagus during magnetic resonance angiography before atrial fibrillation radiofrequency catheter ablation. European Radiology Experimental 2:1. . [Crossref]

64. David Clases, Michael Sperling, Uwe Karst. 2018. Analysis of metal-based contrast agents in medicine and the environment. TrAC Trends in Analytical Chemistry 104, 135-147. [Crossref]

76. Yue Dai, Chen Wu, Shan Wang, Qing Li, Min Zhang, Jingjing Li, Kai Xu. 2018. Comparative study on in vivo behavior of PEGylated gadolinium oxide nanoparticles and Magnevist as MRI contrast agent. Nanomedicine: Nanotechnology, Biology and Medicine 14:2, 547-555. [Crossref]

78. Lingzhao Zhao, Xiangyang Shi, Jinhua Zhao. Dendrimer-Based Nanoplatforms for SPECT Imaging Applications 509-535. [Crossref]

79. David L. Thomas, Karin Shmueli, Marilena Rega, Francisco Torrealdea, Louise van der Weerd, Mark F. Lythgoe, John S. Thornton. Experimental Models of Brain Disease: MRI Contrast Mechanisms for the Assessment of Pathophysiological Status 63-92. [Crossref]
80. Hayrettin Tumani, André Huss, Franziska Bachhuber. The cerebrospinal fluid and barriers – anatomic and physiologic considerations 21-32. [Crossref]

83. Val M. Runge. 2018. Dechelation (Transmetalation). Investigative Radiology 53:10, 571. [Crossref]

85. Jennifer Moroz, Stefan A. Reinsberg. Dynamic Contrast-Enhanced MRI 71-87. [Crossref]

86. Shane Harstad, Shivakumar Hunagund, Zoe Boekelheide, Zainab A. Hussein, Ahmed A. El-Gendy, Ravi L. Hadimani. Gd-Based Magnetic Nanoparticles for Biomedical Applications 137-155. [Crossref]

88. Yang Du, Xiaolong Liang, Yuan Li, Ting Sun, Huadan Xue, Zhengyu Jin, Jie Tian. 2017. Liposomal nanohybrid cerosomes targeted to PD-L1 enable dual-modality imaging and improve antitumor treatments. Cancer Letters; [Crossref]

89. Soenke Langner, Marie-Luise Kromrey, Jens-Peter Kuehn, Matthias Grothe, Martin Domin. 2017. Repeated intravenous administration of gadobutrol does not lead to increased signal intensity on unenhanced T1-weighted images—a voxel-based whole brain analysis. European Radiology 27:9, 3687-3693. [Crossref]

91. T. Lurthu Pushparaj, V. Alexander. 2017. Trinuclear Gd(III) Metal Complex with Amide Core Display Remarkable Enhancement in Relaxivity. Applied Magnetic Resonance 48:8, 813-825. [Crossref]

97. Afshin Farzaneh-Far, Raymond Y. Kwong. 2017. Cardiovascular PET/MR: We need evidence, not hype. Journal of Nuclear Cardiology 24:3, 1032-1035. [Crossref]

100. Henrik S Thomsen. 2017. Are the increasing amounts of gadolinium in surface and tap water dangerous?. Acta Radiologica 58:3, 259-263. [Crossref]

101. Marie-Luise Kromrey, Kim Rouwen Liedtke, Till Ittermann, Sönke Langner, Michael Kirsch, Werner Weitschies, Jens-Peter Kühn. 2017. Intravenous injection of gadobutrol in an epidemiological study group did not lead to a difference in relative signal intensities of certain brain structures after 5 years. European Radiology 27:2, 772-777. [Crossref]

103. Nathalie Mignet, Daniel Scherman. Liposome Biodistribution via Europium Complexes 145-154. [Crossref]

106. . 109. [Crossref]

107. David L. Thomas, Karin Shmueli, Marilena Rega, Francisco Torrealdea, Louise van der Weerd, Mark F. Lythgoe, John S. Thornton. Experimental Models of Brain Disease: MRI Contrast Mechanisms for the Assessment of Pathophysiological Status 1-30. [Crossref]

111. Eric Lancelot. 2016. Revisiting the Pharmacokinetic Profiles of Gadolinium-Based Contrast Agents. *Investigative Radiology* **51**:11, 691-700. [Crossref]

112. Ayami Ohno Kishimoto, Yo Kishimoto, David L. Young, Jinjin Zhang, Ian J. Rowland, Nathan V. Welham. 2016. High- and ultrahigh-field magnetic resonance imaging of naïve, injured and scarred vocal fold mucosae in rats. *Disease Models & Mechanisms* **9**:11, 1397-1403. [Crossref]

114. Simon A. Cotton. 1 A Perspective on Lanthanide Chemistry 1-18. [Crossref]

115. P. Niederer, F. Fankhauser. 2016. Theoretical and practical aspects relating to the photothermal therapy of the retina and choroid: A review. *Technology and Health Care* **24**:5, 607-626. [Crossref]

125. Michael Tweedle, Krishan Kumar, Michael Knopp. X-Ray, MRI, and Ultrasound Agents: Basic Principles 249-276. [Crossref]
126. Lele Li, Rong Tong, Mengyuan Li, Daniel S. Kohane. 2016. Self-assembled gemcitabine–gadolinium nanoparticles for magnetic resonance imaging and cancer therapy. Acta Biomaterialia 33, 34-39. [Crossref]
133. P.L. Anelli, V. Lorusso, F. Tedoldi. Magnetic Resonance Imaging Contrast Agents . [Crossref]
136. Jing Meng, Yizhe Zhao, Zhongfeng Li, Ligang Wang, Yang Tian. 2016. Phase transfer preparation of ultrasmall MnS nanocrystals with a high performance MRI contrast agent. RSC Advances 6:9, 6878-6887. [Crossref]
137. Song Gao, Simon J. George, Zhao–Hui Zhou. 2016. Interaction of Gd-DTPA with phosphate and phosphite: toward the reaction intermediate in nephrogenic systemic fibrosis. Dalton Transactions 12, 5388-5394. [Crossref]
139. Giuseppe Lo Re, Daniela Berritto, Federica Vernuccio, Alfonso Reginelli, Dario Picone, Francesca Iacobellis, Maria Cristina Galfano, Roberto Luca, Roberto Grassi, Massimo Midiri. Anal Fistula in Crohn’s Disease 115-126. [Crossref]
140. Lu Chi, Kai Cheng, Zoya Heidari. 2016. Improved Assessment of Interconnected Porosity in Multiple-Porosity Rocks by Use of Nanoparticle Contrast Agents and Nuclear-Magnetic-Resonance Relaxation Measurements. SPE Reservoir Evaluation & Engineering 19:01, 095-107. [Crossref]
141. Rui Chen, Daishun Ling, Lin Zhao, Shuaifei Wang, Ying Liu, Ru Bai, Seungmin Baik, Yuliang Zhao, Chunying Chen, Taeghwan Hyeon. 2015. Parallel Comparative Studies on Mouse Toxicity of Oxide Nanoparticle- and Gadolinium-Based T1 MRI Contrast Agents. ACS Nano 9:12, 12425-12435. [Crossref]
143. Yuan-Yuan Zheng, Hai-Hong Zhang, Xin-Xin Yan, Min Chen, Tian-Yu Qi, Lan-E Zhang, Da-Li Luo. 2015. Protective effect of low dose gadolinium chloride against isoproterenol-induced myocardial injury in rat. Apoptosis 20:9, 1164-1175. [Crossref]
144. Thomas Frenzel, Rüdiger Lawaczek, Matthias Taupitz, Gregor Jost, Jessica Lohrke, Martin A. Sieber, Hubertus Pietsch. 2015. Contrast Media for X-ray and Magnetic Resonance Imaging. Investigative Radiology 50:9, 671-678. [Crossref]
145. Or Perlman, Iris S Weitz, Haim Azhari. 2015. Copper oxide nanoparticles as contrast agents for MRI and ultrasound dual-modality imaging. *Physics in Medicine and Biology* **60**:15, 5767-5783. [Crossref]

150. Abdullah O. Ba-Salem, M. Nasiruzzaman Shaikh, Nisar Ullah, Mohamed Faiz. 2015. Synthesis and magnetic relaxation properties of new Gd(III) complexes derived from DTPA-bis(amide) conjugates of arylpiperazinyl amines. *Inorganic Chemistry Communications* **56**, 5-7. [Crossref]

153. Seung-gu Kang, Raul Araya-Secchi, Deqiang Wang, Bo Wang, Tien Huynh, Ruhong Zhou. 2015. Dual Inhibitory Pathways of Metallofullerol Gd@C82(OH)22 on Matrix Metalloproteinase-2: Molecular insight into drug-like nanomedicine. *Scientific Reports* **4**:1. [Crossref]

155. Maciej Zborowski, Jeffrey J. Chalmers. Magnetophoresis: Fundamentals and Applications 1-23. [Crossref]

159. Cristina Lavini. 2015. Simulating the effect of input errors on the accuracy of Tofts’ pharmacokinetic model parameters. *Magnetic Resonance Imaging* **33**:2, 222-235. [Crossref]

161. Gayane Abdullaeva, Gulnara Djuraeva, Andrey Kim, Yuriy Koblik, Gairatulla Kulabdullaev, Turdimukhammad Rakhmonov, Shavkat Saytjanov. 2015. Evaluation of absorbed dose in Gadolinium neutron capture therapy. *European Radiology* **25***(8), 2291-2297. [Crossref]

162. Meng Gao, Nan Yao, Dejian Huang, Cuihua Jiang, Yue Li, Bin Lou, Fei Peng, Ziping Sun, Yicheng Ni, Jian Zhang. 2015. Trapping effect on a small molecular drug with vascular-disrupting agent CA4P in rodent H22 hepatic tumor model: in vivo magnetic resonance imaging and postmortem inductively coupled plasma atomic emission spectroscopy. *Journal of Drug Targeting* **1-8**. [Crossref]

163. C. Watson, J. Ullmann. The Brain Stem 251-259. [Crossref]
164. F Mostafaei, F E McNeill, D R Chettle, M D Noseworthy. 2015. A feasibility study to determine the potential of in vivo detection of gadolinium by x-ray fluorescence (XRF) following gadolinium-based contrast-enhanced MRI. *Physiological Measurement* **36**:1, N1-N13. [Crossref]

165. Diego Hernando, Shane A. Wells, Karl K. Vigen, Scott B. Reeder. 2015. Effect of hepatocyte-specific gadolinium-based contrast agents on hepatic fat-fraction and R2+. *Magnetic Resonance Imaging* **33**:1, 43. [Crossref]

166. Franca Castiglione, Andrea Mele, Guido Raos. 17O NMR 143-193. [Crossref]

167. ArulMurugan Ambikapathi, Tsung-Han Chan, Chia-Hsiang Lin, Fei-Shih Yang, Chong-Yung Chi, Yue Wang. 2015. Convex Optimization-Based Compartmental Pharmacokinetic Analysis for Prostate Tumor Characterization Using DCE-MRI. *IEEE Transactions on Biomedical Engineering* **1-1. [Crossref]

168. Fei Chen, Min Chen, Chuan Yang, Jun Liu, Ningqi Luo, Guowei Yang, Dihu Chen, Li Li. 2015. Terbium-doped gadolinium oxide nanoparticles prepared by laser ablation in liquid for use as a fluorescence and magnetic resonance imaging dual-modal contrast agent. *Physical Chemistry Chemical Physics* **17**:2, 1189-1196. [Crossref]

169. Changjiang Wu, Danyang Li, Li Yang, Bingbing Lin, Houbing Zhang, Ye Xu, Zhuzhong Cheng, Chunxiao Xia, Qiyong Gong, Bin Song, Hua Ai. 2015. Multivalent manganese complex decorated amphiphilic dextran micelles as sensitive MRI probes. *Journal of Materials Chemistry B* **3**:8, 1470-1473. [Crossref]

170. Qiu Wu, Qinchen Cheng, Siming Yuan, Junchao Qian, Kai Zhong, Yinfeng Qian, Yangzhong Liu. 2015. A cell-penetrating protein designed for bimodal fluorescence and magnetic resonance imaging. *Chemical Science* **6**:11, 6607-6613. [Crossref]

171. Thennmozhi Murthurajan, Pooja Rammanohar, Nisha Palanisamy Rajendran, Swaminathan Sethuraman, Uma Maheswari Krishnan. 2015. Evaluation of a quercetin–gadolinium complex as an efficient positive contrast enhancer for magnetic resonance imaging. *RSC Advances* **5**:106, 86967-8697. [Crossref]

173. Alan Jasanoff. Contrast Agents for Molecular-Level fMRI 865-894. [Crossref]

174. Rebecca E. Thornhill, Elena Peña. Late Gadolinium Enhancement Imaging 211-226. [Crossref]

175. Giovanni Gandini. 2014. Use of oral gadobenate dimeglumine to visualise the oesophagus during magnetic resonance angiography in patients with atrial fibrillation prior to catheter ablation. *Journal of Cardiovascular Magnetic Resonance* **16**:1. [Crossref]

179. Qian Qi, Andreas Groß, Gunnar Jeschke, Adelheid Godt, Malte Drescher. 2014. Gd(III)-PyMTA Label Is Suitable for In-Cell EPR. *Journal of the American Chemical Society* **136**:43, 15366-15378. [Crossref]

180. Tijana Rajh, Nada M. Dimitrijevic, Marc Bissonnette, Tamara Koritarov, Vani Konda. 2014. Titanium Dioxide in the Service of the Biomedical Revolution. *Chemical Reviews* **114**:19, 10177-10216. [Crossref]

181. ArulMurugan Ambikapathi, Tsung-Han Chan, Chia-Hsiang Lin, Fei-Shih Yang, Chong-Yung Chi, Yue Wang. 2015. Convex Optimization-Based Compartmental Pharmacokinetic Analysis for Prostate Tumor Characterization Using DCE-MRI. *IEEE Transactions on Biomedical Engineering* **1-1. [Crossref]

182. Thenmozhi Muthurajan, Pooja Rammanohar, Nisha Palanisamy Rajendran, Swaminathan Sethuraman, Uma Maheswari Krishnan. 2015. Evaluation of a quercetin–gadolinium complex as an efficient positive contrast enhancer for magnetic resonance imaging. *RSC Advances* **5**:106, 86967-8697. [Crossref]

184. Alan Jasanoff. Contrast Agents for Molecular-Level fMRI 865-894. [Crossref]
309. Anoop Ramgolam, Raphaël Sablong, Lionel Lafarge, Hervé Saint-Jalmes, Olivier Beuf. 2011. Optical spectroscopy combined with high-resolution magnetic resonance imaging for digestive wall assessment: endoluminal bimodal probe conception and characterization in vitro, on organic sample and in vivo on a rabbit. Journal of Biomedical Optics 16:11, 117005. [Crossref]

311. Teemu Kalliokoski, Erkki Svedström, Jani Saunavaara, Anne Roivainen, Mikko Kankaanpää, Heikki Oivanen, Pirjo Nuuttila, Olli Simell. 2011. Imaging of Insulitis in NOD Mice with IL-2-Gd-DTPA and 1.5 T MRI. Advances in Molecular Imaging 01:03, 43-49. [Crossref]

312. Michel Modo, Jeff W.M. Bulte. From Molecules to Man: The Dawn of a Vitreous Man 3-14. [Crossref]

313. Manav Bhushan, Julia A. Schnabel, Laurent Risser, Mattias P. Heinrich, J. Michael Brady, Mark Jenkinson. Motion Correction and Parameter Estimation in dceMRI Sequences: Application to Colorectal Cancer 476-483. [Crossref]

314. J. Bogaert, K. Goetschalckx. Myocardial Perfusion 167-202. [Crossref]

319. Iris M. Noebauer-Huhmann, Pavol Sizmolyanyi, Vladimir Juras, Oliver Kraff, Mark E. Ladd, Siegfried Trautmann. 2010. Gadolinium-Based Magnetic Resonance Contrast Agents at 7 Tesla. Investigative Radiology 45:9, 554-558. [Crossref]

320. Padmini Varadarajan, Ramdas G. Pai, Krishna S. Nayak, Hee-Won Kim, Gerald M. Pohost. Cardiovascular Magnetic Resonance: Evaluation of Myocardial Function, Perfusion, and Viability 196-245. [Crossref]

327. Sang-Hoon Chung, Myeong-Jin Kim, Jin-Young Choi, Hye-Suk Hong. 2010. Comparison of two different injection rates of gadoxetic acid for arterial phase MRI of the liver. Journal of Magnetic Resonance Imaging 31:2, 365-372. [Crossref]

328. Robert R. Edelman, James W. Goldfarb, Agnes E. Holland. Cardiovascular Magnetic Resonance Angiography 463-479. [Crossref]

329. Nathalie Mignet, Daniel Scherman. Liposome Biodistribution via Europium Complexes 509-518. [Crossref]

330. Wolfgang R. Nitz, Thomas Balzer, Daniel S. Grosu, Thomas Allkemper. Principles of Magnetic Resonance 1-105. [Crossref]

331. Fiona J Gilbert, Trevor S Ahearn. 2009. Dynamic contrast-enhanced MRI in cancer. Imaging in Medicine 1:2, 173-186. [Crossref]

337. Pidraig Cantillon-Murphy, Lawrence J. Wald, Markus Zahn, Elfar Adalsteinsson. 2009. Measuring SPIO and Gd contrast agent magnetization using 3 T MRI. *NMR in Biomedicine* 22:8, 891-897. [Crossref]

343. Dipan J. Shah, Han W. Kim, Raymond J. Kim. 2009. Evaluation of Ischemic Heart Disease. *Heart Failure Clinics* 5:3, 315-332. [Crossref]

348. Benjamin G. Nolan, Linda A. Ross, Dennis E. Vaccaro, Ernest V. Groman, Christopher P. Reinhardt. 2009. Estimation of glomerular filtration rate in dogs by plasma clearance of gadolinium diethylenetriamine pentaacetic acid as measured by use of an ELISA. *American Journal of Veterinary Research* 70:4, 547-552. [Crossref]

351. Jeremy F. P. Ullmann, Gary Cowin, Nyoman D. Kurniawan, Shaun P. Collin. 2009. Magnetic resonance histology of the adult zebrafish brain: optimization of fixation and gadolinium contrast enhancement. *NMR in Biomedicine* n/a-n/a. [Crossref]

352. Ruirui Qiao, Chunhui Yang, Mingyuan Gao. 2009. Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. *Journal of Materials Chemistry* 19:35, 6274. [Crossref]

353. Hak Kim, Yong Kim, In Lee, Jong Song, Yeon Jeong, Seon Choi, Kyung Choi, Kuen Suh, Byung Cho. 2009. Intra-arterial delivery of triolein emulsion increases vascular permeability in skeletal muscles of rabbits. *Acta Veterinaria Scandinavica* 51:1, 30. [Crossref]

354. Zheng Rong Lu, Anagha Vaidya. Image-Guided Photodynamic Cancer Therapy 581-599. [Crossref]

377. Alan Jasanoff. Contrast Agents for Magnetic Resonance Imaging 63-78. [Crossref]
381. Martin Rohrer. MRI Contrast Media — Introduction and Basic Properties of the Blood Pool Agent Gadofosveset (Vasovist®) 3-15. [Crossref]
382. Carmen Burtea, Sophie Laurent, Luce Vander Elst, Robert N. Muller. Contrast Agents: Magnetic Resonance 135-165. [Crossref]
384. Martin J. Graves. 2007. Pulse sequences for contrast-enhanced magnetic resonance imaging. Radiography 13, e20-e30. [Crossref]
391. Aaron M. Mohs, Thanh Nguyen, Eun–Kee Jeong, Yi Feng, Lyska Emerson, Yuda Zong, Dennis L. Parker, Zheng-Rong Lu. 2007. Modification of Gd-DTPA cystine copolymers with PEG–1000 optimizes pharmacokinetics and tissue retention for magnetic resonance angiography. Magnetic Resonance in Medicine 58:1, 110-118. [Crossref]
enhanced MR Imaging of Postoperative Scars and VX2 Carcinoma in Rabbits: Comparison of Macromolecular Contrast Agent and Gadopentetate Dimeglumine. *Radiology* **229**:1, 132-139. [Crossref]

484. Young Hoon Kim, Byung Ihn Choi, Woo Ho Cho, Sunggig Lim, Woo Young Moon, Joon Koo Han, Hanns-Joachim Weinmann, Kee-Hyun Chang. 2003. Dynamic Contrast-Enhanced MR Imaging of VX2 Carcinomas After X-Irradiation in Rabbits. *Investigative Radiology* **38**:9, 539-549. [Crossref]

494. C. T. Peng. *Radiopaque materials* 473-588. [Crossref]

495. C. T. Peng. Radiopaque materials 473-588. [Crossref]

497. C. T. Peng. Radiopaque materials 473-588. [Crossref]

498. Tsuyoshi MATSUNAKA, Mareomi HAMADA, Yuji MATSUMOTO, Jitsuo HIGAKI. 2003. First-pass Myocardial Perfusion Defect and Delayed Contrast Enhancement in Hypertrophic Cardiomyopathy Assessed with MRI. *Magnetic Resonance in Medical Sciences* **2**:2, 61-69. [Crossref]

501. Heiko Mahrholdt, Anja Wagner, Robert M. Judd, Udo Sechtem. Stress Echocardiography Versus Cardiac Magnetic Resonance Imaging 403-418. [Crossref]

507. Timothy S. Huang, James F. Zucherman, Ken Y. Hsu, Michael Shapiro, Daniel Lentz, John Gartland. 2002. Gadopentetate Dimeglumine as an Intravascular Contrast Agent. Spine 27:8, 839-843. [Crossref]

513. Erik Wiener, Venkatraj V. Narayanan. Magnetic resonance imaging contrast agents: Theory and the role of dendrimers 129-247. [Crossref]

514. Joseph B. Mandeville, Bruce R. Rosen. Functional MRI 315-349. [Crossref]

516. Ernö Brücher. Kinetic Stabilities of Gadolinium(III) Chelates Used as MRI Contrast Agents 103-122. [Crossref]

518. R. Hammerstingl, W. Schwarz, T. J. Vogl. Magnetresonanztomographie von Lebermetastasen — ein Überblick 95-117. [Crossref]

520. René M. Botnar, Matthias Stuber, Kraig V. Kissinger, Warren J. Manning. Technical Principles of MRA 515-526. [Crossref]

525. Anna Moore, Lee Josephson, Rajeev M. Bhorade, James P. Basilion, Ralph Weissleder. 2001. Human Transferrin Receptor Gene as a Marker Gene for MR Imaging. Radiology 221:1, 244-250. [Crossref]
Imaging to Quantify Myocardial Infarction: Comparison with 99m Tc-DTPA Autoradiography in Rats. *Radiology* 211:3, 698-708. [CrossRef]

Spontaneous Canine Breast Tumors Using Dynamic Magnetic Resonance Imaging with 24-Gadolinium-DTPA-Cascade-Polymer, A New Blood-Pool Agent. Investigative Radiology 31:5, 267-274. [Crossref]

661. Manfred Säbel, Horst Aichinger. 1996. Recent developments in breast imaging. Physics in Medicine and Biology 41:3, 315-368. [Crossref]

665. Masaya Takahashi, Hirokazu Tsutsui, Chie Murayama, Tomoaki Miyazawa, Bernhard Fritz-Zieroth. 1996. Neurotoxicity of gadolinium contrast agents for magnetic resonance imaging in rats with osmotically disrupted blood-brain barrier. Magnetic Resonance Imaging 14:6, 619-623. [Crossref]

670. H.-J. Weinmann, A. Mühler, T. Balzer. Tissue-Specific Contrast Agents 150-163. [Crossref]

671. H. Traupe. Gehirn und Rückenmark 473-538. [Crossref]

672. Peng-Peng Zhu Tang, Martin P. Schweizer, J. Rock Hadley, Shonn P. Hendee, Richard H. Tippets, Kenneth M. Bradshaw. T1 measurement to study the penetration of BNCT agents into canine tumors caused by blood-brain barrier damage 541-546. [Crossref]

673. Y. Shibata, A. Matsumura, K. Nakagawa, T. Yamamoto, Y. Yoshii, T. Nose, S. Sakata, S. Nakajima. The Measurement of Gadolinium Concentration in Rat Brain Tumor with NMR Analyzer for Neutron Capture Therapy 251-255. [Crossref]

674. V. F. Khokhlov, P. N. Yashkin, D. I. Silin, E. S. Djorova, R. Lawaczeck. Neutron Capture Therapy with Gd-DTPA in Tumor-Bearing Rats 865-869. [Crossref]

675. Yuan Chunbo, Zhao Daqing, Zhao Bing, Wu Yijie, Liu Juzheng, Ni Jiazuan. 1996. 2D NMR and FT-Raman Spectroscopic Relaxation Dispersion Studies of Water-soluble Gadolinium(iii)-texaphyrin Complexes. Journal of Magnetic Resonance Imaging 5:6, 725-729. [Crossref]

678. T. Imaeda, R. Mochizuki, M. Kanematsu, Y. Yamawaki, H. Goto, M. Seki, H. Doi, S. Saji, K. Shimokawa. 1995. Hemodynamics of small hepatocellular carcinomas (5 cm or less in diameter): Cases with discrepant findings between dynamic MR images and hepatic arteriograms. Abdominal Imaging 20:6, 534-540. [Crossref]

706. John A. Sanders, William W. Orrison. Functional Magnetic Resonance Imaging 239-326. [Crossref]

707. Kazuya Tamai, Minoru Yamato, Takehiko Yamaguchi, Wataru Ohno. 1994. Dynamic magnetic resonance imaging for the evaluation of synovitis in patients with rheumatoid arthritis. Arthritis & Rheumatism 37:8, 1151-1157. [Crossref]

710. Alan D. Watson. 1994. The use of gadolinium and dysprosium chelate complexes as contrast agents for magnetic resonance imaging. Journal of Alloys and Compounds 207-208, 14-19. [Crossref]

719. Frank S. Prato, Jane M. Wills, J. Roger, H. Frappier, Dick J. Drost, Ting-Yim Lee, Richard R. Shivers, Pamela Zabel. 1994. Blood-brain barrier permeability in rats is altered by exposure to magnetic fields associated with magnetic resonance imaging at 1.5 T. Microscopy Research and Technique 27:6, 528-534. [Crossref]

720. Shoko Yahata, Takao Endo, Hiroshi Honma, Takeshi Ino, Hirokazu Hayakawa, Maki Ogawa, Hiromitsu Hayashi, Tatsuo Kumazaki. 1994. Sunray appearance on enhanced magnetic resonance image of cardiac angiosarcoma with pericardial obliteration. American Heart Journal 127:2, 468-471. [Crossref]

722. R. A. Schwendener. 1994. Liposomes as carriers for paramagnetic gadolinium chelates as organ specific contrast agents for magnetic resonance imaging (mri). Journal of Liposome Research 4:2, 837-855. [Crossref]

723. Bernard A. Birnbaum, Jeffrey C. Weinreb, Maria P. Fernandez, Jeffrey J. Brown, Neil M. Rofsky, Stuart W. Young. 1994. Comparison of contrast enhanced CT and Mn-DPDP enhanced MRI for detection of focal hepatic lesions initial findings. Clinical Imaging 18:1, 21-27. [Crossref]
727. Ernst E. Van Der Wall, Hubert W. Vliegen. Magnetic resonance techniques for the assessment of myocardial viability 103-140. [Crossref]
730. Edward Preston, David O. Foster. 1993. Diffusion into rat brain of contrast and shift reagents for magnetic resonance imaging and spectroscopy. *NMR in Biomedicine* 6:5, 339-344. [Crossref]
741. Christoph de Haën, Luigia Gozzini. 1993. Soluble-type hepatobiliary contrast agents for MR imaging. *Journal of Magnetic Resonance Imaging* 3:1, 179-186. [Crossref]
infarction with occluded and reperfused coronary arteries after thrombolysis. *The American Journal of Cardiology* 65:13, 845-851. [Crossref]

822. P. Heintz, Ch. Ehrenheim, G. Oetting, H. Hundeshagen. Differentiation of Focal Liver Lesions by Contrast-Enhanced MRI 225-233. [Crossref]

823. T. Watabe, T. Iwata. Tissue Accessibility of Gd-DTPA in Meningiomas and Neuromas 299-303. [Crossref]

824. G. Gademan, R. Haerten, H. Weinmann, W. J. Huk, W. Schajor, M. Deimling, W. Heindel, W. Steinbrich. Physical Principles and Techniques of MR Imaging 1-49. [Crossref]

825. H. Traupe. Gehirn und Rückenmark 387-451. [Crossref]

826. M. Sperber. *Magnetic Resonance Imaging of the Thorax* 77-91. [Crossref]

832. Saul Schaefer, Richard A. Lange, Padmarker V. Kulkarni, Jose Katz, Robert W. Parkey, James T. Willerson, Ronald M. Peshock. 1989. In vivo nuclear magnetic resonance imaging of myocardial perfusion using the paramagnetic contrast agent manganese gluconate. *Journal of the American College of Cardiology* 14:2, 472-480. [Crossref]

834. Susan L. Kraft, Patrick R. Gavin, Lyle R. Wendling, Venkat K. Reddy. 1989. CANINE BRAIN ANATOMY ON MAGNETIC RESONANCE IMAGES. *Veterinary Radiology* 30:4, 147-158. [Crossref]

845. Gustav Konrad von Schulthess. Renal Morphology and Function in Magnetic Resonance Imaging 111-131. [Crossref]

847. H. Henkes, W. Schörner. Zerebrale Manifestationen 17-80. [Crossref]

848. E. Schouman-Claeys, G. Frija. Contrast media 53-64. [Crossref]

849. Edward A. Neuwelt, Peggy A. Barnett. Blood-Brain Barrier Disruption in the Treatment of Brain Tumors 107-193. [Crossref]

853. A. Dean Sherry, William P. Cacheris, Kah-Tiong Kuan. 1988. Stability constants for Gd3+ binding to model DTPA-conjugates and DTPA-proteins: Implications for their use as magnetic resonance contrast agents. *Magnetic Resonance in Medicine* **8**:2, 180-190. [Crossref]

883. G. M. Bydder, H. P. Niendorf, I. R. Young. Clinical Use of Intravenous Gadolinium-DTPA in Magnetic Resonance Imaging of the Central Nervous System 129-145. [Crossref]

884. L. D. Hall, P. G. Hogan. Paramagnetic Pharmaceuticals for Functional Studies 107-127. [Crossref]

885. Paul G. Braunschweiger, Marvin A. Rich. Application of Proton Nuclear Magnetic Resonance to Tumor Biology 141-157. [Crossref]

889. Yuichi Manabe, Clifford Longley, Philip Furmanski. 1986. High-level conjugation of chelating agents onto immunoglobulins: use of an intermediary poly(l-lysine)-diethyleneetriaminepentaacetic acid carrier. Biochimica et Biophysica Acta (BBA) - General Subjects 883:3, 460-467. [Crossref]

890. Graeme M. Bydder. 1986. Nuclear magnetic resonance of the brain. Cardiovascular and Interventional Radiology 8:5-6, 264-274. [Crossref]

893. Paul G. Braunschweiger, Lewis Schiffer, Philip Furmanski. 1986. The measurement of extracellular water volumes in tissues by Gadolinium modification of 1H-NMR spin lattice (T1) relaxation. Magnetic Resonance Imaging 4:4, 285-291. [Crossref]

898. L. D Hall, W. A. Stewart. Medical Aspects of Magnetic Resonance 169-175. [Crossref]

899. R. C. Brasch, H. Paaianen, W. Grodd, D. Revel, B. Engelstad. Development of Magnetic Resonance Contrast Media for Tumors 39-46. [Crossref]

904. Marc D. Ogan, Robert C. Brasch. Chapter 28. Contrast Enhancing Agents in NMR Imaging 277-286. [Crossref]

908. W. L. Curati, R. E. Steiner. 1985. MRI of the abdomen. *Archives Of Physiology And Biochemistry* 93:5, 55-60. [Crossref]

910. U. Speck, R. Felix. Paramagnetic Contrast Media of the Present and the Future 180-183. [Crossref]

911. Wolfgang Schörner, Ekkehard Kazner, Michael Laniado, Christian Sprung, Roland Felix. 1984. Magnetic resonance tomography (MRT) of intracranial tumours: Initial experience with the use of the contrast medium gadolinium-DTPA. *Neurosurgical Review* 7:4, 303-312. [Crossref]

912. Klaus Roth. Addendum 114-120. [Crossref]

913. Steven Dymarkowski, Jan Bogaert, Yicheng Ni. Ischemic Heart Disease 173-216. [Crossref]

914. Nidal Al-Saadi, Jan Bogaert. Myocardial Perfusion 143-172. [Crossref]

915. Contrast Agents 385-430. [Crossref]

916. Laure S. Fournier, Robert C. Brasch. The Role of Blood Pool Contrast Media in the Study of Tumor Pathophysiology 39-52. [Crossref]

917. Dara L. Kraitchman. Spin- and Gradient-Echo Imaging 29-40. [Crossref]